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§ 1. INTRODUCTION

Three-dimensional separated flow represents a domain of fluid mechanics of
great practical interest that is now just beyond the reach of definitive theoreti-
cal analysis or numerical computation. It has been a topic of intensive study
over the past three decades. Reliable theoretical analysis and numerical compu-
tation and proper interpretation of experimental observations all depend cru-
cially on a correct understanding of the behavior of flow separation.

Steady three-dimensional flow separation has been studied by Maskell (1955),
Legendre {1956, 1965, 1972, 1977, 1982), Werlé (1962, 1979), Lighthill (1963),
Wang (1972, 1974, 1976), Perry and Fairlie (1974), Hsieh and Wang (1976), Hunt
et. al. {1978), Han & Patel (1979), Tobak & Peake (1979, 1980, 1982), Dallmann
(1983), Hornung & Perry {1984), and Zhang (1985). Important advances in the
understanding of the nature of three-dimensional flow separation have been
made which are well summarized in a recent review paper by Chapman (1986).
In particular, it is now established (Lighthill, 1963} that the line of separation is
itself a skin-friction line onto which adjacent skin-friction lines converge asymp-
totically, and is not an envelope of skin-friction lines as posed by Maskell (1955).
However, issues concerning the origin of three-dimensional flow separation, and
especially the existence of Wang's "open" separation, have not been completely
resolved.

Unsteady flow separation, on the other hand, is not well understood, particularly
in three dimensions. The often-quoted MRS (Moore 1958, Rott 1956, Sears
1956) criterion seems supported by some numerical computations and the ana-
Iytic solution of Williams and Johnson {1974) to the unsteady boundary layer
equations, but is difficult to apply in practice as the movement of the separation
point is not known A priori. Virtually all theoretical studies on unsteady flow
separation (e.g., Cebeci, 1982) are based on the two-dimensional boundary-layer
equations. These cease to be valid at the onset of separation, so that no conclu-
sion about the subsequent behaviour of flow separation can be drawn from
them.
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[t is clear that a correct theory of the onset of flow separation and of the subse-
quent separated flow must be based on the full Navier-Stokes equations and not
the boundary-layer equations. In this respect, it is interesting to note that
whilst the solutions to the boundary layer equations may possess singularities
(e.g. the Goldstein singularity on the line of separation), solutions of the
Navier-Stokes equations are analytic evervwhere. Therefore, it is not only more
desirable but actually conceptually simpler to base our study of flow separation
on the properties of solutions to the full Navier-Stokes equations rather than
their boundary-layer approximation.

In this paper we shall restrict the scope of our investication to the topological
aspects of unsteady three-dimensional separated flows. In this regard, we
observe that all results concerning the topology of steady three-dimensional
separated flows that have been reported to date are obtainable solely on the
basis of the following properties of the velocity field V, namely

—

(i) V' is analytic (1)
i) V-V=o0 ()
(iii) V=0 on the body surface (3)

Equation (3) expresses the no-slip boundary condition of the viscous fluid at the
wall, whereas equation (2) is the continuity equation of an incompressible flow, *
On the other hand, as pointed out earlier, the analyticity copdition (1) of Vis a
property of any solution to the Navier-Stokes equations; V' would be singular
{e.g. the Goldstein singularity at the line of separation) if the flow were
governed by the boundary-layer equations. These properties are shared, of
course, by all solutions of the Navier-Stokes equations. On the other hand,
separation properties that result from them are shared hy classes of solutions.

It is the existence of properties that are shared by classes of solutions that sug-
gests the adoption of a topological description of the flow, since topological pro-
perties also are shared by classes of solutions. By restricting our attention to
topological properties only, we are able to avoid invoking the momentum equa-
tion which would be needed if we were to ask for the solution corresponding to
specific boundary conditions. Nevertheless, the literature cited has shown that
a fairly complete (albeit non-specific) topological description of separation in
steady three-dimensional flow can be drawn based on Egs (1) - (3) alone. In sec-
tions 2 and 3 we shall constrnct a mathematical framework for steady three-
dimensional flow separation, ending up with a precise description of the class of
flow separation we consider. The same framework will permit us, in section 4,
to draw an analogous description of unsteady three-dimensional separated flow
of the same class.

* The case of steady compressible flow is discussed in section 6.
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We note that the analysis given in this paper based on the postulates (1) - (3) is
actually more generally applicable than to the Navier-Stokes equations alone. In
particular, the analysis will be applicable to whatever modeled equations are
used to represent steady turbulent flow.

§ 2. CLASSIFICATION OF STEADY FLOW SEPARATION

Consider a steady flow of an incompressible viscous fluid over a body whose sur-
face is B. Let &n¢ be a local orthogonal curvilinear coordinate system such that
¢ = 0 coincides with the body surface and the n-axis is along the line of separa-
tion (to be defined more precisely in § 2.2 and § 3.5). Denote the scale coeffi-
cients by h(§n,9), ho(&n,¢) and 1, respectively, and the corresponding unit vee-

— —

2
tors by e, €, and e3 .

2.1 Properties of a Vector Field

— —

Let U(&7n,¢) be a vector field in the three-dimensional space &n¢, where U is ana-
lytic jointly in £, 1 and ¢. A field line of U is a curve whose tangent is every-
where parallel to U/, whereas a field surface is one whose normal is everywhere
perpendicular to U. When the vector field is the flow velocity, its field lines are
called streamlines and its field surfaces are called stream surfaces.

By the theorems of existence and uniqueness of solutions of ordinary, differential
equations, it is shown that through each regular point, where U s 0, there
passes one and only one field line. Consequently, if two field lines intersect with
or are tangent to each other, the point of iptersection or of tangency must be a
singular point of the vector field where U = 0. Moreover, a field line cannot
end except at a singular point. On the other hand, there exist two independent
families of field surfaces whose normals, while both perpendicular to U, are dif-
ferent. Through a regular line on which U # 0 (except possibly at a finite
number of isolated points), there passes one and only one field surface of each
family. Consequently, no two field surfaces of the same family can intgrsect
with or be tangent to each other except along a singular line on which U = 0.
Also the boundary of a field surface, if it exists, must be a singular line. Furth-
ermore, if two field surfaces of different families intersect with each other, the
line of intersection must be a field line. On the other hand, they cannot be
tangent to each other except along a singular line, as they have different nor-
mals.

To sum up: {a) the field lines and field surfaces are determined solely by the
direction, and not the magnitude, of the vector field; (b) if two field lines inter-
sect with or are tangent to each other the point of intersection or of tangency
must be a singular point; (c) if two field surfaces intersect with each other, the
line of intersection must be a field line; (d) if two field surfaces are tangent to
each other, the line of tangency must be a singular field line.

In application to fluid flow we note that a stream surface must either originate
from (or terminate at) infinity, or else, it must originate from (or terminate at)
the body surface which, according to (3), is a singular ficld surface. This latter
case is relevant in the study of flow separation.
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We now compare the properties of the velocity field V and that of 3V /8¢ near

the body surface. The body surface is a singular surface of V according to_Eq.

(3), but is not, in general, a singular surface of OV /3¢ By its analyticity V. is

proportional to ¢ as ¢ — 0, hence, the direction of V is the same as that of Vi

as ¢ — 0. By L'Hospital's rule, V¢ — 9V /3¢ as ¢ — 0. So the direction of V
b

is the same as the direction of as ¢ — 0. Consequently, they have the same

ok . . Hav| .
field lines and field surfaces near the body surface. Since [T] is propor-
¢
— §=0
tional to the skin-friction vector €,, the limiting streamlines coincide with the
skin-friction lines. As the magnitude of a vector field does not affect its field
lines or field surfaces, we simply define

- av
€y = |—= . 4
[‘)f ]r-O )

% =
A field surface of Z— and that of V are said to be adjunct field surfaces if they

-

intersect with the body surface at the same line. Evidently, two adjunct field
surfaces are tangent to each other, and hence have the same normal along their
line of intersection with the body surface.

Furthermore, from the continuity equation (2), we have

d(hyu) a(hv) d{h how)

=0
253 + an d¢ ()
where
V= uey + vey + wey (6)
On the body surface, where (3) holds, Eq (5) reduces to
dw -0 (7)
¢ Jmo
5V
This shows that C,” . ?3] =0, ie
a¢ ¢=0
2V Gl =0 (8)
d¢ =0

where FB is the normal to the body gurface. Accordingly, the body surface is a
aVv . T
field surface of the vector field 3—3" and it must therefore also be a limiting

-
stream surface of V.
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We note here that in what follows only the continuity equation on the body sur-
face (7) is needed, but we do not need the full continuity equation (5). In other
words, all the topological properties given in sections 2-3 are derived based on
(1), (3) and (7). This point is important and will be used in extending (in sec-
tion 6) the incompressible flow analysis to the compressible flow case.

2.2 Classification of Flow Separation

In what follows shall define flow separation in a way that will exclude considera-
tion of what Wang (1974) has called "open” separation. This is not to deny the
existence of such a category of flow but simply to affirm that it escapes our clas-
sification. A flow is said to separate from the body surface B if there exists a
stream surface S that intersects B on the line I' and if streamlines on S in the
vicinity of T all originate from I' and are directed away from I. We call S a
separation stream surface and [ a line of separation; the latter will be taken to
be the n-axis. Flow attachment differs from flow separation merely in having
an opposite flow direction, but otherwise has identical topological properties.
For simplicity we shall refer, wherever no confusion may arise, only to flow
separation with the understanding that whatever we say can be made to apply
to flow attachment as well by a suitable reversal of flow directions.

Two mutually exclusive cases exist:

(1) The separation stream surface S is tangent to the body surface B along the

whole of the separation line I'. In this case the adjunct field surface of %

must also be tangent to the body surface along the same separation line
This is possible only if the separation line is itself a singular line of the vee-

A% —
tor field 8_5'- , i.e. a singular line of the skin-friction vector field €.
¢=0

This type of separation will be called singular tangent separation.
(2) The separation stream surface S intersects with the body surface B non-
tangentially, i.e. at a non-zero finite angle along the, line of separation I'. In
. . . oV . .
this case the adjunct separation field surface of e also intersects with the

body surface at non-zero angle along the same separation line I'. Since the

body surface is shown to be a field surface of % , the line of separation

must be a field line of %‘i, and hence is itself a skin-friction line. Due to

the analyticity of €, the line of separation [ must either be a singular skin-
friction line, along which ?w = 0 everywhere, or a regular skin-friction line
containing, possibly, a finite number of isolated singular points of €,. In
the former case the separation is called singular separation, whereas the
latter case is called regular separation.

To sum up, within our classification, there exist two and only two types of flow
separation of an incompressible viscous fluid:

523



(a) Regular separation, where the line of separation is itsclf a regular skin-
friction line (containing, possibly, a finite number of singniar points), from
which the separation stream surface leaves the body surface at a non-zero
angle.

(b) Singular separation, where the line of separation is a singular skin-friction
line, from which the separation stream surface leaves the body surface
either at a non-zero angle or tangentially along the line of separation.

Regular separation is the common type of flow separation in genuinely three-
dimensional flow (Peake & Tobak, 1980) and will be studiced in the next section.
By contrast, two-dimensional and axisymmetric flow separation must he of
singular type due to flow symmetry. If there exists a singular point of the skin-
friction field from which a streamline leaves the body surfuce, symmetry requires
that the singular point must lie on a singular line and the streamline must lie on
a stream surface which leaves the body surface, rendering the scparation singu-
lar.

As an example of tangent separation we cite the high Reynolds number flow
past a slender body, e.z., a cone or a delta wing, at small incidence where the
lines of separation are only slightly inclined to the dircction of the main flow.
F.T. Smith (1978) presented evidence showing that the limiting form of the flow
at infinite Reynolds number is a potential flow in which are embedded vortex
sheets carrying concentrated vorticity. He also showed that the vortex sheets
must separate tangentially from the body surface. This type of flow separation
at infinite Reynolds number thus belongs to the class of singnlar tangent separa-
tion. Tangent separation will be shown {in section 5) to prevail as well when
flow separation first appears in the impulsively started flow past a cirenlar
cylinder.

§ 3. REGULAR SEPARATION

In this section we shall study the local behavior of the flow field near the line of
separation.

3.1. Existence of a Singular Point on the Line of Separation

In regular separation, the separation stream surface S leaves Lhe body surface B
with a non-zero angle along the separation line I" Consequently

e d e d
["S X 63]1‘ #0 (9)
- ., . »
where ng is the unit normal of the separation stream surface.

Now, streamlines on the separation stream surface S in the vicinity of the
separation line " originate from I If all su(h strea1jxlinns on S intersect with T

tangentially to the body surface B, then 7_1’5 X ?3 = (t along the separation

line T, contradicting (9). Hence, there must be at least one streamline on S that
intersects with the hodyv surface B at some point P on I', making a non-zero
angle to the body surface.  Let the cquation of this streamline be given
parametrically by {= k(7). 7 = ky(r), ¢ = k(). Then
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[Eﬁi] #0 (10)
dr P

Since the direction of this streamline at the point of intersection I2 is parallel to
7

the limiting direction of V at P, which, in turn, is parallel to , we get

P

-

du/ds  Ovfds  dw/ig
dk/d1 — dko/dr  dkg/drT

at P (11)

With condition (10) and [@-] = 0 from (7), Egs. (11) yield
r

a¢
du av
= |— =0 12
C]P [Bf]P u

So the point of intersection P is a singular point of the skin-friction field ?u,.

<O

We conclude that there must exist at least one singular point of the skin-friction
field ?w on the line of separation in regular separation. The above arguments
also show that any streamline on the separation stream surface that intersects
with the body surface must do so at a singular point on I". Such singular points
are isolated on I' in regular separation. They, together with the remaining
singular points in the skin-friction field, must obey certain topological rules as
described by Hunt, et. al. (1978). In particular, the number of nodal points
must exceed the number of saddle points by two on any smooth body surface
that is topologically equivalent to a sphere.

3.2. A Necessary Condition

As shown in § 2.2, the line of separation I is itself a skin-friction line. Its equa-
tion may then be given by

hd€ hodn

= on I 13
- - (13)
33‘ =0 35. ¢=0

Since I' is taken to be the n-axis, we also have

d€:dn=0:1 on [ (14)

Therefore, from (13) and (14) we get

du
[_8—5—]6-;-0 =0 (15)
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The above analysis shows that (15) is a necessary condition for the n -axis, (i.e.
§= ¢ =0) to be a line of separation. However, contrary to Zhang's (1985) con-
clusion, it is not a sufficient condition for the 7 -axis to be a line of separation.

3.3 The Flow Reversal Condition

In the situation of flow separation, it is clear that the body surface B and the
separation stream surface S constitute two barriers to the flow such that near
and on opposite sides of the line of separation I" a certain component of the flow

must reverse direction. In particular, (ﬁ);_o < 0 and (g‘—)g_o > 0 for flow
(93‘ £—0+ d £—0-
separation where fluid flows away from the body surface ¢ = 0. Likewise,
(8—u)g_g >0 and (-?}i);_o < 0 for flow attachment where fluid flows toward
a¢ £—0+ I¢ "t
the body surface. Consequently we obtain

2
R(n) = [aaé';g‘ ]s—;-o <0 for flow separation (16)
R(n) = 8% >0 for flow attachment 17
n FE¢ Jemro attachmen (17)

These flow reversal conditions, which are direct generalizations of the conditions
for two-dimensional flow, were first obtained by Zhang (1985).

3.4 Types of Singular Points on the Line of Separation

(1) Velocity field near a singular point

Without loss of generality, we let the singular point 0 on I be at E=n=¢=0.

Expanding the velocity components u,v,w as Taylor series about the point 0
and using (3) yield

u={(a £+ b n+cg)+ - (18a)

v=(ay {+byn +cog)s+ - (18b)

w={(ag{+bgn+cze)s+ - (18¢)
where a,, ..., ¢5 are constants, and "+..." denotes higher order terms in & 7, ¢.

As (15) and (7) imply, respectively,

by=0, {(19a)

ag=1by =0, (19b)
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the streamlines near the singular point 0(0,0,0) on the line of separation are
therefore given by the following differential equations

hiod€ _ hogdn _ d¢ (20)
a &+ ¢ ax€ + bon + eo¢ €3¢

where hjg = (h;)gmp=¢=0, 1=1,2 . We now investigate the behavior of the
streamlines near the singular point, first on the body surface B and then on the
separation stream surface S.

(2) On the body surface B

As the body surface is approached, ¢ — 0 and the streamlines coincide with the
skin-friction lines as noted in section 2.1. The equations for the skin-friction
lines are obtained from (20) with ¢ = 0:

hodf  af
hoodn  agf+ by7

(21)

According to singularity theory of ordinary differential equations and the fact
that A5 >0 and hyy > 0, the nature of the singular point 0 of the skin-friction
field is determined by the sign of

qp = a;b, (22)

In particular, a node (including a focus) corresponds to gg > 0, whereas a saddle
point corresponds to g < 0.

(3) On the separation stream surface S
Let the equation of the separation stream surface be given by
§: ¢ = F(§n) (23)
As S intersects the body surface ¢ = 0 along the n-axis, we have
FlOom)=0 (24)

Expanding F(£7) as a Taylor series about the point £ = 7 = 0 and using (24) we
get

¢ =F(&n) = k& + 0(&,&) (25)

The equations of the streamlines on the separation stream surface S are
obtained by substituting (25) in (20):

hyod§ _ hoodn _ ﬁé_ (26)
(ay + ke)€ (ag + key)€+ byn c3€ B

Accordingly, we get
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k = (hyocs — a})/c, (27)

and
1 odg et (282)
hoo dn (ag + keo)E+ by
¢
= (28b)

Equation (27) determines the local slope k of the separation stream surface S at
the singular point 0, whereas Eqs (28) determine the streamlines on S. With &n
as the surface coordinates of S, singularity theory of ordinary differential equa-
tions again asserts that the nature of the singular point 0 of the flow field V on
the separation stream surface is determined by the sign of

g5 = c3by (29)

In particular, a node (including a focus) corresponds to ¢g > 0, whereas a saddle
point corresponds to gg < 0.

Now, in the case of flow separation we have ¢5 >0, but a; = R(0) <0 [rom
(18), so ¢; and ay, and hence gg and gg, are of opposite signs. We conclude that
a singular point of the flow field on the line of separation must be either

(a) a saddle point in the skin-friction field on the line I' and, at the same loca-
tion, a nodal point on the separation stream surface S. Because of the
presence of the body surface B, the node on S is one-sided and hence can
only be a regular node, not a focus. The streamlines on & all originate at
the nodal point and are directed away from it. In effect, they have entered
the stream surface through the saddle point in the skin-friction field on the
line of separation. We call the saddle point a suddle point of separation.
The flow is illustrated in Fig. 1.

4

Fig 1. Flow near a saddle point of separation O of the skin-friction field on the
line of separation I. With flow direction reversed this [igure also represents
the flow near a saddle point of attachment.
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Fig 2a. Flow near a nodal point of separation 0 of the skin-friction field on the
line of attachment I With flow direction reversed this figure also represents
the flow near a nodal point of attachment.

or

(b) a nodal point in the skin-friction field on the line I' and, at the same loca-
tion a half-saddle point on the separation stream surface S. In this case,
there is only one streamline on S that has entered through the node in the
skin-friction field. This node may be either a regular node or a focus, but
in either case it must be a node of separation. The flow is illustrated in
Fig. 2.

3.5 Distribution of Singular Points on the Line of Separation

The flow direction of the skin-friction field €, along the line of separation,

which is the 7-axis, is determined by —g——z = D(n). Near the singular
g=E=0
point 0(0,0,0) we have, from (18b)
D(n) = byn + 0(n*) (30)

At a saddle point of separation ¢; = R(0) <0 and ¢gg = a;b6, <0, hence by >0
and the flow is away (rom the saddle point. Similarly, at a nodal point of
separation a, <0 and gp = a,by > 0, hence by, <0 and the flow is toward the
nodal point.
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Fig 2b. Flow near a focus of separation of the skin-friction field.

Furthermore, on the line of separation I" where £ = ¢ = 0, we have [_._g'; ] -0
r
from (15). Hence, every point P on I" where

D(m)pr =0 (31)

is a singular point of €,,. Consequently, D(n) changes sign only when passing a
singular point on I'.

Combining the above two results, we see that along the line of separation €,
must always flow from a saddle point of separation (S,) toward a node of
separation (INV,). (By reversing the direction of the flow ficld we see also that
along a line of attachment €, must always flow from a node of attachment (N,)

toward a saddle point of attachment (S,).)

It is now evident that a line of separation I in regular separation must originate
at a saddle point of separation. If I' is closed it must also contain a node of
separation, this being a consequence of the continuity of flow direction along T’
and of condition (31). On the other hand, if I is an open curve on the surface
of a three-dimensional finite body its end-points must be singular points of ?w.
The rule governing the direction of flow along the line of separation then
requires that these end-points be nodes of separation.
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3.6 Summary of Properties of Regular Flow Separation

The mathematical properties of regular flow separation derived in sections 2 and
3 are summarized as follows.

(a) The line of separation I' is itself a skin-friction line. Consequently, when it

is chosen as the n-axis of a curvilinear orthogonal coordinates &n¢ it is
necessary that

a
[—u] =0 (32)
d¢ {=5=0
Also
a2
[_u <0 for flow separation {33a)
98¢ {=s=0
2,
[ 9 u >0 for flow attachment (33b)
FEIC Jgmgmo

(b) The line of separation must originate from a saddle point of the skin-
friction field. It must end at a nodal point of separation if it is a closed
curve or at a pair of nodal points of separation if it is an open curve.

(¢) A saddle point of the skin-friction field on the line of separation is simul-
taneously a half-nodal point of the flow field on the separation stream sur-
face (cf. Fig. 1). A nodal point of separation of the skin-friction field on the
line of separation is simultaneously a half-saddle point of the flow field on
the separation stream surface {cf. Fig. 2).

§ 4. UNSTEADY THREE-DIMENSIONAL FLOW SEPARATION

By unsteady flow separation we mean time-dependent flow separation relative to
an observer on the body surface. An unsteady flow is said to separate from the
body surface B at time ¢ if there exists a stream surface S at ¢ that intersects
B on the line I and if the streamlines on S at time ¢ in the vicinity of I" all ori-
ginate from I" and are directed away from it. The stream surface § is called the
instantaneous separation stream surface at the instant ¢, and I' the instantane-
ous line of separation. Flow attachment at time t is defined analogously with
flow directions reversed.

To describe unsteady flow separation relative to an observer on the body sur-
face, it is imperative that we use a frame of reference that is fixed to the body
surface. The body in question may be a rigid body performing a given motion,
or it may be a deformable body.

Now for an unsteady incompressible flow vicwed in a frame of reference fixed to
the body surface, the continuity equation at any instant of time remains the
same as that of steady flow, i.e.
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V- V(@) =0 (34)
Furthermore,
f’(?,z ) is analytic in the spatial variables * (35)

being a consequence of the Navier-Stokes equations. With our choice of the
frame of reference, the bonundary condition that there be no slip at the body sur-
face remains

V(¥5t) =0 on the body surface (36)
even though the flow above the surface may be unsteady.

We note that the time variable ¢t appears only as a parameter in Egs. (34) - (36)
which are otherwise identical to Egs. (1) - (3). Of coupse, the time ¢ appears as

. A
a genuine independeut variable through the term 5. 0 the momentum equa-

tion. The time-history elfects of the unsteady motion of the fluid are thus
introduced oply through the momentum equation, which now contains an jnertia
force term F; arising from the motion, or deformation, of the body in addition
to the external force . For instance,

- av. S o & L L

F,=— T-#—QQXV—{-QX(QXV)-FTXV' (37)

for a rigid body where V, is the velocity of the center of mass of the body and {2
is its angular velocity.

As we have noted in § 1, the momentum equation for steady flow, which would
be needed to determine the separated flow field uniquely, could be by-passed if
we asked only for a topological description of the flow near the body surface.
Analogously, we can avoid invoking the unsteady momentum equation by again
asking only for a topological description of unsteady flow separation, this time
based on Eqs (34) - (36) instead of Egs. (1) - (3). By comparing the two sets of
equations, we conclude that separation of an unsteady incompressible viscous
flow at time t, when viewed from a frame of reference fixed to the body surface,
is topologically the same as that of the fictitious steady flow obtained by freez-
ing the unsteady flow at the instant ¢. In other words, the topological proper-
ties of unsteady flow separation at time £, as recorded by, say, a snapshot of the
flow, are governed by the same rules that govern separation in steady flow. In
this sense, all results in §§ 2 and 3 for steady separation apply to unsteady flow
separation instantaneously.

We further remark that the MRS criterion of unsteady flow separation aims at
answering the question of "massive" flow separation which is determined by the
momentum equation with an inertia force term, whereas our theory based on
equations (34) - (36) and ignoring the momentuin equation deseribes only the
local behavior of flow separation near the body surface. Of course, the behavior
of flow separation as described in this paper must always be present locally in
any “massively” separated flow field.
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§ 5. APPLICATIONS

This section is devoted to a preliminary, qualitative discussion of some aspects
of unsteady flow separation.

5.1 The Stream Functions

It is well known that the continuity equation (34) may be replaced by introduc-
ing two stream functions ¥{r;t) and x(7t), namely

V = VX Vy (38)

Evidently, Eq (34) is automatically satisfied, and V is analytic in ¥ provided ¥
and x are. Also ¥(rt) = const. and x(v;t) = const. represent two families of
instantaneous stream surfaces at time ¢.

The equation of the body surface in the body surface-fixed coordinates must be
independent of time, and hence must be of the form

B(r)=0 (39)

As the body surface is a stream surface for all time, we choose the rfamily of
stream surfaces such that 1(r;t) = O contains the body surface. To satisfy con-
dition (36) it is then necessary and sufficient that ¢ be of the form

Yrit) = B(r) S(r3t) (40)
where S and B are functionally independent. It is easily shown that the surface
S(;:t) =0, (41)

if it exists, is also a stream surface. Furthermore, if it intersects with the body
surface at the instant ¢, it is an instantaneous separation stream surface and the
intersection is an instantaneous line of separation. An important problem is to
study the evolution of the surface S(r}t) = 0, especially near the time ¢ = Ts
when it first intersects with the body surface.

5.2 Onset of Separation for Impulsively Started Flow past a Circular
Cylinder

As an example of the problem just cited, consider the two-dimensional impulsive

incompressible flow U, past a stationary circular cylinder of radius a. For high

Reynolds number flow, R, = #.oa >>1, C.Y. Wang (1967) used the method

of matched asymptotic expansions to obtain a uniformly valid solution to the
third order in € = 1/R, that is valid for small time. His solution for the stream
function in polar coordinates (r,0) is
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¢=sin9(r—~l—)+e4 '\/;r-_sinﬂ[——l—+e_"?—\/;nerfc r/]
r r

t Vi Vi :
+€2v47r—sm9[— 4” erfq+32” ﬂzerjcn—%ne—vﬁ]
+ 283 5in § cos § Gy (n) + 0(¢%) (42)

where all the lengths arc measured in units of @, velocity components in units of
U, . Hence ¥is measured in units of Uga and we choose to measure time ¢ in
units of €a/U,, . The variable 7 is related to r by n = (r — 1)/(2¢ \/t_) The
first term in (42) represents the inviscid potential flow at the initial instant,
! = 0. The solution (42) may also be written

W(n.0it) = 4 VIt sin 8 |G y(n) + eVI{Gyn) + 2V Gyn) cos 0}] (43)

where
Gin) = erf 0+ = (e = 1) (44)
Gz(n)=—n2+vgn—n—%erfq+%ﬂﬁe,fcﬂ_273;ne-ﬁ (45)

1 2 8 3
Gyln) = raves e Verfen — Vor erfec \ﬁz-n + % erfc?y

— ﬁl—- r/Qe_”Q erfc n + L ne"2"2 -z erfeln
3IVr 3 2
1 4 3 2 4
=2t 4.5
+ Vr 97 ‘.’]e l+97r nerfen

1

4
l —
+ C 7 + Gm

vl (10)

. . 2 n .2
Here erf is the error function, erf n = e %'d¢, and the complementar
\Vr Jo P Y

error function erfc n = 1 — erf 5. It can easily be shown that at the body sur-
face, n =0, G;(0) = G',(0) =0, 7 =1,2,3. Hence (43) is of the form
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Y=14eVt sin 6 0% S(n,0:t) (47)
in conformity with Eq (36). In Eq (47)
S(n8it) = 91(n) + € VE [aa(n) + 2V gofn) cos 6 (48)

where g;(n) = G;(n)/n% ¢ = 1,2,3. The functions g;(7n) are plotted in Fig. 3. In
particular, near the body surface, i.e. for # small, we get

g.(n) = VI; + 0(n?)

tence

+ 2¢t

S(r/,B;t)=vl7-r- 1+c\/t_l

4 4 2
-3 1+37r—3r]]cos0 (49)

The function § given by (49) is now used to study the behavior of flow separa-
tion near the body surface.

Although Wang's analysis is based on the assumption of small time, the solution
may be used to give qualitative results for larger times. For this purpose we let
time T be measured in units of a /U, l.e. T = €t. Eq. (49) then becomes

1.0

0.6} g'

0.2 \ 33

0
-02f 9,
-0.6}-
-1.0+
l | | | I ]
0.0 2.0 40 6.0 8.0 0.0

n

Fig 3. The functions g,(n), g.(n), ga(n) .

535



We observe from (50) that

(a)
(b)

(d)

Only after a finite time can it happen that S = Q.
The time T when the surface S = 0 intersects with the body surface 7 = 0
is given by

2+ VerT + 4(1 + ;—w)T cos 6 =0 (51)

It is clear from (51) that the surface S = 0 will first interscet with the body
surface at § = 7, i.e. at the rear stagnation point.

The separation time T,, defined as the time when the surface S = 0 first
intersects with the body surface, is given by

'\/32(1 + %) +em + Ver

4
8(1 + —3;)

T =

8

- o

4
2(1 + B—Tr)

0.35 + 0(e'/%) (52)

We note that the separation time T, caleulated above as the time when the
separation surface first appears is identical to Wang’s estimate of the time
when the surface shear stress first becomes zero.

From (50) we see that at the separation time T,, whence 8 = r,

an

— ey =0 53

] o
T=T,

This shows that initially the separation surface S = 0 leaves the body sur-
face tangentially, i.e., initial separation is a tangent singular separation.
However, at any later time T > T, it is a non-tangential singular separation
as

an

a6 S=0 # 0 (54)

n=0
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-N (8.}

T=1>Tg

Fig 4. Impulsive flow past a stationary cylinder, 2, = 100.

In Fig 4 are shown the stream surfaces, including S = 0, at three di.fferent
times T=0,T =T, and T =1 > T, all cases for R, = 100. It is seen
that the surface S = 0 emerges from inside the cylinder; as soon as it moves
into the flow field, the flow becomes separated.

Impulsive flow past a stationary sphere can be studied similarly by taking

U= r,b;t
oy o9

for symmetric flow, where (r,8,4) are spherical coordinates. The flow separation
properties are expected to be qualitatively the same as those for the impulsive
flow past a circular cylinder: at some finite time T, after starting, a separation
stream surface will first appear tangentially at the rear stagnation point; it will

grow with time, immediately becoming non-tangential to the body surface as it
emerges into the flow field.
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5.3 Effects of Expansion of a Circular Cylinder on Flow Separation

An interesting numerical study has just been made Ly Lin, Mekala, Chapman
and Tobak (1986) on the migration of the separation point on a deforming
cylinder. The qualitative aspects of the effects of deformation of the cylinder on
the onset of flow separation can now be discussed from a frame of reference
fixed to the body surface. From this frame of reference the effect of accelera-
tion and of deformation of the eylinder surface is equivalent to adding appropri-
ate inertia forces.

To consider the effect of surface deformation alone on flow separation, let a(t)
be the radius of the cylinder and r the distance of a fluid particle from the sur-
face of the cylinder (IMig. 5). Let # and € be unit vectors in the ratial and
azimuthal directions respectively. The absolute acceleration of the fluid particle
is

— e oa

A= (d + ) 4204 + M08 — (a + r)0% + (a + r)00

= {;-'— (a + r)éQJf + {(a + )8 + 2;3(9]6 + [('[f- + zdéé]

=A,+ A, (56)

where Ay, the quantity in large brackets, is the acceleration of the particle_that
would be present alone if there were no deformation of the cylinder, and Ap is
the additional acceleration arising from _ghe deformation. Relative to the
cylinder surface at tiine ¢t the inertia force F; of a particle of unit mass is thus

—

a(t)

Ult)

Fig 5. Uniform flow past a deforming circular cylinder showing notation.
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In the case of a flow U past a circular cylinder whose surface is expanding at
constant rate (Fig. 5) ¢ >0, @ = 0, the inertia force acting on the particlc: is
equal to —2a86. This force acts in the direction just opposite to the motion
(# > 0) of the particles near the body surface, and, like an adverse pressure, has
the effect of hastening the separation time. In the case of constant-rate con-
traction of the body surface, the inertia force is 2|d |#6 which acts in the same
direction of motion as the particles near the body surface, and therefore has the
effect of delaying the separation time. These qualitative conclusions agree with
those resulting from the numerical computation of Lin, et. al. for an impulsively
starting flow past a cylinder deforming at constant rate.

The effect of non-constant rate of expansion or contraction can also be discussed
by adding a term —aF to the inertia force. There are four different cases
depending on the combination of the signs of d and @. It can be shown that in
the case when @ > 0 and @ < 0 flow separation is hastened the most, whereas in
the case a < 0 and & > 0 flow separation is delayed the most.

If the flow is not started impulsively but rather, is started from rest, accelerat-
ing constantly over a time interval 7. followed by a constant velocity, the effect
on the motion of the fluid particles as viewed from the body surface-fixed frame
of reference is equivalent to adding an inertia force U over 7,. Such a force is a
favorable one and tends to delay flow separation. Therefore, with the same con-
stant U, larger 7, will delay flow separation further. This conclusion is also in
agreement with that resulting from the numerical computation of Lin et. al.
(1986).

§ 8. CONCLUDING REMARKS

In this paper a concise mathematical framework is constructed to study the
topology of steady three-dimensional separated flow of an incompressible viscous
fluid. With flow separation defined by the existence of a stream surface which
intersects with the body surface, it is shown that the line of separation is itself a
skin-friction line. Flow separation is classified as being either regular or singu-
lar, depending respectively on whether the line of separation contains only a fin-
ite number of singular points or is a singular line of the skin-friction field.

[n regular separation a line of separation originates from a saddle point of
separation of the skin-friction field and ends at nodal points of separation. It is
also shown that a saddle point of the skin-friction field on the line of separation
is simultaneously a half-nodal point of the flow field on the separation stream
surface. Conversely, a nodal point of the skin-friction field on the line of

separation is simultaneously a half-saddle point of the flow field on the separa-
tion stream surface.

The same mathematical framework proves useful for a study of the topology of
unsteady three-dimensional incompressible flow separation when the flow is
defined relative to a coordinate system fixed to the body surface. It is shown
that separation of an unsteady incompressible viscous flow at time t, when
viewed from such a frame of reference, is topologically the same as that of the
fictitious steady flow obtained by freezing the unsteady flow at the instant ¢.
Several applications of this result showing effects of various forms of flow
unsteadiness on flow separation are discussed qualitatively.
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Finally, extension of the results for steady three-dimensional incompressible flow
separation to the case of steady compressible flow is straightforward. In the
latter case we still have

(i) Vois analytic (58)

(i1) V=0 onthe body surface B (59)
But, instead of (2), the continuity equation now reads
V- (pV) = V-Vp + pV-V =0 (60)

where p is density of the fluid. However, by using (59), equation (60) reduces to

—

(V-V)g =0 (61)

which, after using (59) once again, in turn implies that

ow
5. g

Equations (58), (59) and (62) for a compressible flow are seen to be identical to
(1), (3) and (7) for an incompressible flow. It has been noted earlier (section 2.1)
that all topological properties of steady three-dimensional flow separation of an
incompressible fluid are derived solely on the basis of equations (1), (8) and (7).
As these latter equations are also shared by a compressible fluid, it is concluded
that the topology of separation of a steady three-dimensional compressible flow
is identical to that of an incompressible flow. We remark, however, that the
topologies will not be identical in the case of unsteady flow, in view of the addi-

tional term 0 p /9t that will appear in the continuity equation for compressible
unsteady flow.
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